

Copper/Silver Cocatalyzed Oxidative Coupling of Vinylarenes with ICH_2CF_3 or ICH_2CHF_2 Leading to β - CF_3 / CHF_2 -Substituted Ketones

Niannian Yi,[†] Hao Zhang,[†] Chonghui Xu,[†] Wei Deng,^{*,†} Ruijia Wang,[†] Dongming Peng,[‡] Zebing Zeng,[†] and Jiannan Xiang^{*,†}

Supporting Information

ABSTRACT: A novel copper/silver cocatalyzed oxidative coupling of vinylarenes with ICH_2CF_3 or ICH_2CHF_2 through a radical process has been developed. The transformation provides an attractive approach to β -CF₃/CHF₂-substituted ketones, with the advantages of easily available starting materials and operational simplicity.

27 examples, yields up to 72%

As one of the most important parts of fluorine chemistry, looking for new methods to access fluorine-containing molecules has been a challenging project. Recently, significant progress has been made in the synthesis of CF_3 -containing molecules. A number of methods have been reported for the synthesis of α - CF_3 ketones. However, although unique and useful chemical properties can be expected for β - CF_3 ketones, reports on them are rare, probably due to the lack of efficient synthetic methods.

To access β -CF₃ ketones, Xiao's group reported ring-opening reactions of *gem*-difluorocyclopropyl ketones promoted by boron trifluoride [Scheme 1, reaction 1].^{3a} The reaction has been simply accomplished in relatively good yield, despite the challenging approach to *gem*-difluorocyclopropyl ketones. Then, the propargylic alcohols and ICF₃ were used as the

Scheme 1. Synthesis of β -CF₃ Ketones

Previous Works

$$F \xrightarrow{Q} R + BX_3 \xrightarrow{CHCl_3} R \xrightarrow{CF_2X} CF_2X \qquad (1)$$

$$X = F, Cl, Br$$

$$Ar$$
 + ICF_3 $[Ru]$ O CF_3 (2)

This Work

starting materials for the synthesis of β -CF₃ ketones, reported by Cho's group [Scheme 1, reaction 2]. The complicated and expensive ruthenium catalyst should be involved in such a developed method. Kananovich^{3c} and Dai's group^{3d} reported Cu-catalyzed trifluoromethylation of cyclopropanols to give β -CF₃ ketones, respectively [Scheme 1, reaction 3]. However, the Togni reagent, an expensive trifluoromethylation reagent, is necessary in those two reactions. Therefore, a simple and inexpensive way to access β -CF₃ ketones still remains elusive.

Based on our continuous research of synthesizing α -functionalized carbonyl compounds, herein we describe a straightforward synthesis of β -CF₃ ketones via copper/silver cocatalyzed oxidative coupling of vinylarenes with ICH₂CF₃. Compared to previous work, this work avoids the use of the Togni reagent, and β -CF₃ ketones are generated from inexpensive ICH₂CF₃ and vinylarenes in a one-step reaction. More importantly, the reaction is also applicable to the synthesis of β -CHF₂ ketones^{2u,5} when the vinylarenes and ICH₂CHF₂ are used as the starting materials.

We began our investigation with the use of 4-tert-butylstyrene and ICH_2CF_3 as the model reaction (Table 1). The desired β -CF₃ ketone (3a) was obtained in 12% yield under the conditions of NiSO₄ (10 mol %), TBHP (3 equiv), Et₃N (1 equiv), and CH₃CN (1 mL) in a sealed tube at 80 °C for 24 h (entry 1). A variety of transition-metal salts were examined, and the results were shown in entries 2–11. Among the salts tested, Cu(acac)₂ performed better than other catalysts, with an up to 42% yield. The reactions with other oxidants, such as DTBP, K₂S₂O₈, and H₂O₂, gave products in low yields (entries 12–14). Then, different solvents were examined, and the results indicated that none of the other solvents was superior to CH₃CN (entries 15–18). Moreover, a base played an important role in the reaction. Organic bases

Received: February 21, 2016 Published: March 25, 2016

[†]State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China

[‡]School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, P. R. China

Organic Letters Letter

7

45

48

57

40

68 (62)

CH₃CN

CH₃CN

CH₃CN

CH₃CN

CH₃CN

CH₃CN

CH₃CN

Table 1. Screening the Optimal Reaction Conditions^a

catalyst

¹ Bu	+	ICH ₂ CF ₃ -	cocatalyst [O], Et ₃ N solvent, 80 °C	^t Bu	CF ₃
1a		2a	solvent, ou -C	3	a
entry	catalyst	cocatalys	t oxidant	solvent	yield (%) ^b
1	NiSO ₄		TBHP	CH ₃ CN	12
2	CoSO ₄		TBHP	CH ₃ CN	20
3	Ag_2SO_4		TBHP	CH ₃ CN	23
4	$Fe_2(SO_4)_3$		TBHP	CH ₃ CN	17
5	CuSO ₄		TBHP	CH ₃ CN	30
6	CuBr		TBHP	CH_3CN	22
7	$CuBr_2$		TBHP	CH_3CN	25
8	Cu(OAc) ₂		TBHP	CH ₃ CN	27
9	$Cu(NO_3)_2$		TBHP	CH ₃ CN	34
10	$Cu(OTf)_2$		TBHP	CH ₃ CN	32
11	Cu(acac) ₂		TBHP	CH_3CN	42
12	Cu(acac) ₂		DTBP	CH_3CN	5
13	Cu(acac) ₂		$K_2S_2O_8$	CH_3CN	17
14	Cu(acac) ₂		H_2O_2	CH ₃ CN	23
15	Cu(acac) ₂		TBHP	DCE	11
16	Cu(acac) ₂		TBHP	DMF	24
17	Cu(acac) ₂		TBHP	DMSO	21
18	Cu(acac) ₂		TBHP	THF	28
19 ^c	Cu(acac) ₂		TBHP	CH ₃ CN	19
20^d	Cu(acac) ₂		TBHP	CH ₃ CN	11

"Reaction conditions: 1a (0.75 mmol), 2a (0.5 mmol), catalyst (10 mol %), cocatalyst (10 mol %), Et₃N (0.5 mmol), oxidant (1.5 mmol), solvent (1 mL) in sealed tube at 80 °C for 24 h. ^bThe yield was determined by 19 F NMR with trifluoromethylbenzene as an internal standard. $^c{\rm Et}_3{\rm N}$ was replaced by DBU (0.5 mmol). $^d{\rm Et}_3{\rm N}$ was replaced by pyridine (0.5 mmol). $^e{\rm Et}_3{\rm N}$ was replaced by K₂CO₃ (0.5 mmol). $^f{\rm Cu}({\rm acac})_2$ (20 mol %) and Ag₂SO₄ (20 mol %) were used, and the number in parentheses was isolated yield. $^g{\rm Cu}({\rm acac})_2$ (20 mol %) was used.

TBHP

TBHP

TBHP

TBHP

TBHP

TBHP

TBHP

21

22

23

24

25

26^f

 2.7^{8}

Cu(acac)₂

Cu(acac)₂

Cu(acac)₂

Cu(acac)₂

Cu(acac),

Cu(acac)₂

Cu(acac)₂

NiSO₄

CoSO

Ag₂SO₄

Ag₂SO₄

 $Fe_2(SO_4)_3$

were relatively better than the inorganic, and Et_3N was the best choice (entries 19-21). Interestingly, further exploration showed that the yield increased significantly from 42% to 57% when Ag_2SO_4 was used as a cocatalyst (entry 24), but other additives had little impact on the reaction (entries 22, 23, and 25). Increasing the loading of $Cu(acac)_2$ and Ag_2SO_4 to 20 mol % led to a considerable increase in the yield up to 68% (entry 26). When 20 mol % $Cu(acac)_2$ was used separately, the product 3a was obtained in 49% yield (entry 27).

With the optimized conditions in hand, the substrate scope of the transformation was then investigated. A variety of terminal vinylarenes could efficiently undergo the desired β -CF₃ ketones in moderate to good yields (Scheme 2). Terminal vinylarenes bearing electron-withdrawing substituents such as fluoro- (3c), chloro- (3d), and bromo- (3e) at the paraposition afforded the corresponding products in good yields. However, when 1-nitro-4-vinylbenzene was used as a substrate, the reaction could hardly occur. Other halostyrenes at the m-and o-position, 3-bromostyrene and 2-chlorostyrene, were

Scheme 2. Substrate Scope for the Reaction of Vinylarenes with $ICH_3CF_3^{a,b}$

^aReaction conditions: 1 (0.75 mmol), 2a (0.5 mmol), Cu(acac)₂ (20 mol %), Ag₂SO₄ (20 mol %), Et₃N (0.5 mmol), TBHP (1.5 mmol, 70% in water), and CH₃CN (1 mL) in sealed tube at 80 °C for 24 h. ^bIsolated yield.

examined and gave the desired products (3f and 3g). Terminal vinylarenes bearing electron-donating substituents such as methyl (3h and 3o), methoxy (3i and 3n), and acetoxy (3j) were also tolerated under the reaction conditions. However, the yields of 3g, 3n, and 3o were about 30%, likely due to the steric effect of substituents on aromatic rings. 2-Vinylnaphthalene was also a suitable substrate for the reaction (3k). Interestingly, when heterocyclic alkenes were used as the substrates, the corresponding products were successfully achieved (3l and 3m). Unfortunately, the desired β -CF₃ ketones would not be obtained when aliphatic alkenes were applied.

Moreover, we explored the reactivity of various terminal vinylarenes with ICH_2CHF_2 under the optimized conditions, and the corresponding β -CHF $_2$ ketones were smoothly achieved in moderate yields (Scheme 3). Similarly, the bulky aromatic rings impacted the yields of the reaction due to the steric effect of substituents. However, the reaction could hardly occur when CH_3CH_2I was used as the starting material.

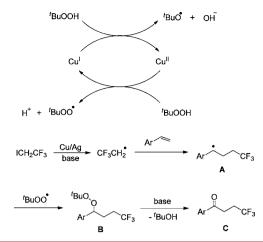
We also explored the reactivity of the $\text{Cu}(\text{acac})_2/\text{Ag}_2\text{SO}_4$ cocatalyzed oxidative coupling reaction for large-scale synthesis of 3a (Scheme 4). The reaction of 4-tert-butylstyrene (1a, 15 mmol) with ICH_2CF_3 (2a, 10 mmol) gave the desired $\beta\text{-CF}_3$ ketone (3a) in 60% yield under the standard conditions.

Control experiments were carried out in order to explore the reaction mechanism (Scheme 5). The reaction using ICH_2CF_3 and TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) was tested under the standard conditions, and the desired product $TEMPO-CH_2CF_3$ was detected by GC-MS, and the yield

Organic Letters Letter

Scheme 3. Substrate Scope for the Reaction of Vinylarenes with $ICH_2CHF_2^{a,b}$

"Reaction conditions: 1 (0.75 mmol), 2b (0.5 mmol), Cu(acac) $_2$ (20 mol %), Ag $_2$ SO $_4$ (20 mol %), Et $_3$ N (0.5 mmol), TBHP (1.5 mmol, 70% in water), and CH $_3$ CN (1 mL) in sealed tube at 80 °C for 24 h. ^bIsolated yield.


Scheme 4. Large-Scale Synthesis of 3a

Scheme 5. Control Experiments

was estimated as 71% by ^{19}F NMR (Scheme 5A). Notably, when TEMPO was added to the reaction of 4-*tert*-butylstyrene and ICH₂CF₃ under the standard conditions, the desired β -CF₃ ketone (3a) was not detected and TEMPO-CH₂CF₃ was formed in 60% yield by ^{19}F NMR (Scheme 5B). The control experiments showed that the reaction proceeded through a radical process.

Based on our experimental results and previous reports, ^{1n,6} a possible radical mechanism for oxidative coupling of vinylarenes is proposed in Scheme 6. Initially, ^tBuOOH is excited to form the ^tBuO[•] radical and the ^tBuOO[•] radical by a copper catalyst, and ICH₂CF₃ generates the CF₃CH₂[•] radical in the presence of copper/silver catalysts and a base. Then, the

Scheme 6. Possible Mechanism

 $CF_3CH_2^{\bullet}$ radical is captured by styrene to produce an intermediate **A**, which can be combined with the ${}^tBuOO^{\bullet}$ radical to afford an intermediate **B**. Finally, the intermediate **B** is converted into the β -CF₃ ketone (C) by removing one tBuOH under the reaction conditions.

The theory of Hard-Soft-Acid-Base (HSAB) likely explains the reason why Ag_2SO_4 plays an important role in this reaction. According to the HSAB theory, Ag^+ belongs to the soft acid and I^- belongs to the soft base. The soft acid is combined with the soft base to form a stable compound. In other words, ICH_2CF_3 is easier to split into the $CF_3CH_2^{\bullet}$ radical when Ag_2SO_4 presents in the reaction system.

In summary, a simple and effective approach to the synthesis of β -CF₃/CHF₂ ketones via the direct copper/silver cocatalyzed oxidative coupling of vinylarenes with ICH₂CF₃ or ICH₂CHF₂ has been developed. Meanwhile we also demonstrate that the reaction is accomplished through a radical process, though the catalyst silver salt is intriguing and not clear yet. Further study for insights into reaction mechanism and for synthetic applications to other bioactive molecules by using the oxidative coupling reaction is currently underway.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.6b00498.

Experimental procedure, mechanistic study, characterization data, and copies of ¹H, ¹³C, and ¹⁹F NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: jnxiang@hnu.edu.cn.
*E-mail: weideng@hnu.edu.cn.

Note

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful for financial support from the National Natural Science Foundation of China (Nos. 21502049 and 51573040), Hunan Provincial Natural Science Foundation of China (Nos. 13JJ5018 and 14JJ7028), the Planned Science and Technology

Organic Letters Letter

Project of Hunan Province, China (No. 2015WK3003), and Hunan Provincial Innovation Foundation for Postgraduate (No. CX2015B076).

REFERENCES

(1) For reviews, see: (a) Nie, J.; Guo, H. C.; Cahard, D.; Ma, J. A. Chem. Rev. 2011, 111, 455. (b) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475. (c) Egami, H.; Sodeoka, M. Angew. Chem., Int. Ed. 2014, 53, 8294. (d) Liu, X.; Xu, C.; Wang, M.; Liu, Q. Chem. Rev. 2015, 115, 683. (e) Charpentier, J.; Fruh, N.; Togni, A. Chem. Rev. 2015, 115, 650. (f) Alonso, C.; Martinez de Marigorta, E.; Rubiales, G.; Palacios, F. Chem. Rev. 2015, 115, 1847. For examples, see: (g) Allen, A. E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 4986. (h) Chu, L. L.; Qing, F. L. J. Am. Chem. Soc. 2010, 132, 7262. (i) Parsons, A. T.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 9120. (j) Wang, X.; Ye, Y. X.; Zhang, S. N.; Feng, J. J.; Xu, Y.; Zhang, Y.; Wang, J. B. J. Am. Chem. Soc. 2011, 133, 16410. (k) Xu, J.; Fu, Y.; Luo, D. F.; Jiang, Y. Y.; Xiao, B.; Liu, Z. J.; Gong, T. J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 15300. (1) Liu, C. B.; Meng, W.; Li, F.; Wang, S.; Nie, J.; Ma, J. A. Angew. Chem., Int. Ed. 2012, 51, 6227. (m) Zhang, X. G.; Dai, H. X.; Wasa, M.; Yu, J. Q. J. Am. Chem. Soc. 2012, 134, 11948. (n) Jiang, X. Y.; Qing, F. L. Angew. Chem., Int. Ed. 2013, 52, 14177. (o) Gao, P.; Shen, Y. W.; Fang, R.; Hao, X. H.; Qiu, Z. H.; Yang, F.; Yan, X. B.; Wang, Q.; Gong, X. J.; Liu, X. Y.; Liang, Y. M. Angew. Chem., Int. Ed. 2014, 53, 7629. (p) Iqbal, N.; Jung, J.; Park, S.; Cho, E. J. Angew. Chem., Int. Ed. 2014, 53, 539. (q) Xu, T.; Cheung, C. W.; Hu, X. L. Angew. Chem., Int. Ed. 2014, 53, 4910. (r) Bagal, D. B.; Kachkovskyi, G.; Knorn, M.; Rawner, T.; Bhanage, B. M.; Reiser, O. Angew. Chem., Int. Ed. 2015, 54, 6999. (s) Liu, J. B.; Chen, C.; Chu, L.; Chen, Z. H.; Xu, X. H.; Oing, F. L. Angew. Chem., Int. Ed. 2015, 54, 11839. (t) Ma, J. J.; Yi, W. B.; Lu, G. P.; Cai, C. Adv. Synth. Catal. 2015, 357, 3447. (u) Tang, X. J.; Dolbier, W. R., Jr. Angew. Chem., Int. Ed. 2015, 54, 4246.

(2) (a) Pham, P. V.; Nagib, D. A.; MacMillan, D. W. Angew. Chem., Int. Ed. 2011, 50, 6119. (b) Novak, P.; Lishchynskyi, A.; Grushin, V. V. J. Am. Chem. Soc. 2012, 134, 16167. (c) Deb, A.; Manna, S.; Modak, A.; Patra, T.; Maity, S.; Maiti, D. Angew. Chem., Int. Ed. 2013, 52, 9747. (d) He, Z. B.; Zhang, R.; Hu, M. Y.; Li, L. C.; Ni, C. F.; Hu, J. B. Chem. Sci. 2013, 4, 3478. (e) Cantillo, D.; de Frutos, O.; Rincon, J. A.; Mateos, C.; Kappe, C. O. Org. Lett. 2014, 16, 896. (f) Li, L.; Chen, Q. Y.; Guo, Y. J. Org. Chem. 2014, 79, 5145. (g) Lu, Q. Q.; Liu, C.; Huang, Z. Y.; Ma, Y. Y.; Zhang, J.; Lei, A. W. Chem. Commun. 2014, 50, 14101. (h) Maji, A.; Hazra, A.; Maiti, D. Org. Lett. 2014, 16, 4524. (i) Tomita, R.; Yasu, Y.; Koike, T.; Akita, M. Angew. Chem., Int. Ed. 2014, 53, 7144. (j) Wang, Y. F.; Lonca, G. H.; Chiba, S. Angew. Chem., Int. Ed. 2014, 53, 1067.

(3) (a) Yang, T. P.; Li, Q.; Lin, J. H.; Xiao, J. C. Chem. Commun. 2014, 50, 1077. (b) Park, S.; Joo, J. M.; Cho, E. J. Eur. J. Org. Chem. 2015, 2015, 4093. (c) Kananovich, D. G.; Konik, Y. A.; Zubrytski, D. M.; Järving, I.; Lopp, M. Chem. Commun. 2015, 51, 8349. (d) Li, Y.; Ye, Z. S.; Bellman, T. M.; Chi, T.; Dai, M. J. Org. Lett. 2015, 17, 2186. (e) Zeng, Y. W.; Ni, C. F.; Hu, J. B. Chem. - Eur. J. 2016, 22, 3210. (f) Huang, M. W.; Li, L.; Zhao, Z. G.; Chen, Q. Y.; Guo, Y. Synthesis 2015, 47, 3891. (g) He, X. P.; Shu, Y. J.; Dai, J. J.; Zhang, W. M.; Feng, Y. S.; Xu, H. J. Org. Biomol. Chem. 2015, 13, 7159. (h) Gao, B.; Zhao, Y. C.; Hu, J. B. Angew. Chem., Int. Ed. 2015, 54, 638. (i) Lerch, M. M.; Morandi, B.; Wickens, Z. K.; Grubbs, R. H. Angew. Chem., Int. Ed. 2014, 53, 8654. (j) Liu, X. W.; Xiong, F.; Huang, X. P.; Xu, L.; Li, P. F.; Wu, X. X. Angew. Chem., Int. Ed. 2013, 52, 6962. (k) Chen, Z. M.; Bai, W.; Wang, S. H.; Yang, B. M.; Tu, Y. Q.; Zhang, F. M. Angew. Chem., Int. Ed. 2013, 52, 9781.

(4) (a) Xie, L. Y.; Wu, Y. D.; Yi, W. G.; Zhu, L.; Xiang, J. N.; He, W. M. J. Org. Chem. 2013, 78, 9190. (b) Xiang, J. N.; Yi, N. N.; Wang, R. J.; Lu, L. H.; Zou, H. X.; Pan, Y.; He, W. M. Tetrahedron 2015, 71, 694. (c) Yi, N. N.; Wang, R. J.; Zou, H. X.; He, W. B.; Fu, W. Q.; He, W. M. J. Org. Chem. 2015, 80, 5023.

(5) (a) Kaneko, S.; Yamazaki, T.; Kitazume, T. J. Org. Chem. 1993, 58, 2302. (b) Tang, X. J.; Zhang, Z. X.; Dolbier, W. R., Jr. Chem. - Eur. J. 2015, 21, 18961.

(6) (a) Wei, W. T.; Song, R. J.; Li, J. H. Adv. Synth. Catal. 2014, 356, 1703. (b) Xu, T.; Hu, X. L. Angew. Chem., Int. Ed. 2015, 54, 1307.

(7) Pearson, R. G. J. Chem. Educ. 1968, 45, 581.